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Highlights  Abstract  

▪ The random shock process with a dynamic 

failure threshold is designed to enhance the 

performance of the hard failure process. 

▪ The degradation process based on the multiple 

wiener process with the random effect is 

constructed. 

▪ The correlation between the multiple 

degradation processes is analyzed by the 

copula function and calculated by the Monte 

Carlo method. 

 Given the presence of multiple degradation failure processes and shock 

failure processes within the complex system during operation, this paper 

develops a reliability model that combines the multiple degradation-

shock competing failure process and dynamic failure threshold. The 

Wiener process with random effects is considered as the degradation 

process model, which includes random effects to account for the 

heterogeneity among system units. Additionally, the extreme shock 

model with a dynamic failure threshold is used to depict the random 

shock. Then, the copula function is carried out to illustrate the correlation 

between multiple degradation processes, the reliability model is 

constructed further. To demonstrate the application of this model, a 

numerical case study and a micro-electro-mechanical system comprising 

two micro-mechanical resonators are employed. The parameter 

sensitivity of the proposed model is analyzed. The outcomes of the study 

highlight that the reliability model, which combines the Wiener process 

with random effects and the dynamic failure threshold, more accurately 

reflects the actual operational state of the complex system. 
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1. Introduction 

Accurately analyzing the failure mechanism is the foundation 

for enhancing the operational quality of a complex system. 

However, given the complexity of the operational environment, 

there are numerous factors that need to be considered in 

reliability analysis[15]. Therefore, to guarantee the reliability 

and safety of the complex system, this paper establishes a 

reliability model that incorporates the relationships between the 

different failure mechanisms. 

In general, the failure mechanism of the complex system in 

reliability modeling is primarily divided into two aspects: hard 

failure and soft failure[16]. The former is the external shock 

loads caused by the complex environment exceed than the hard 

failure threshold of the system; the soft failure refers to the 

cumulative degradation of internal factors[1](such as wear[23], 

corrosion, etc.) and the degradation increment caused by 

random shock are higher than the soft failure threshold[35,36]. 

When the system experiences external shocks, the degradation 

increment occurs, and it becomes easier for the degradation to 

exceed the soft failure threshold. Since the random shock 

process will affect the degradation process, and the ability to 
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resist random shock will be weakened by the accelerated 

degradation process. Ultimately, the system will fail once either 

soft or hard failures occur. Therefore, considering the 

competitive failure process can enhance the accuracy of the 

system reliability model [17]. 

Since the random process method can accurately depict 

the stochastic characteristics of the system and the 

randomness of system degradation, it is widely used in 

degradation process modeling. Some commonly used 

methods include the Wiener process [9], Gamma process 

[33,24], inverse Gaussian process [25], linear regression 

process [18], and more. Among these, the Wiener process is 

often favored by researchers as the degradation process due to 

its provision of a clear analytical formula for the distribution of 

the first arrival time when the degradation amount exceeds the 

failure threshold. This facilitates reliability calculation and 

analysis. In [5], the Wiener process is adopted to construct the 

reliability model and maintenance model. In [19], the multi-

phase Wiener process is proposed to determine the remaining 

useful life (RUL) of the gyroscope. To enhance the effectiveness 

of degradation process modeling, a Wiener process that 

combines temporal features and variability is designed to track 

the degradation path[6]. Liu et al. [10] employ the Wiener 

process with measurement error and evidence variables to 

estimate reliability, enabling accurate prediction of the 

degradation amount. Ref. [20] divides the degradation process 

into two phases and combines the Wiener process with evidence 

variables in degradation process modeling. To enhance the 

nonlinear capability of the reliability model, the nonlinear 

Wiener process is proposed for reliability estimation in Refs. 

[2,11,27,21]. 

However, due to the complexity of the external environment, 

a single degradation process is insufficient for modeling the 

degradation process of the system. It is necessary to consider 

the dependence of multiple degradation processes in reliability 

analysis. In [28], Li et al. assumed that all failure processes in 

the system are independent and constructed a reliability model 

that combines multiple degradation processes and shock 

processes. However, even a small difference can cause changes 

in the system's operation, and independent failure processes are 

likely to result in significant model errors. A reliability model 

that considers the correlation effects of multiple degradation 

processes is more aligned with the actual operating state. For 

example, in [34], a method for modeling mutual influence in 

failure processes was proposed, and the copula function was 

used to describe the relationship between multiple degradation 

processes. In [7], the copula function was adopted to model 

multivariate correlated accelerated degradation test data. 

Therefore, considering the interaction relationship of multiple 

degradation processes can enhance the credibility of the 

reliability model. Furthermore, the correlation between multiple 

degradation processes is generally expressed using the copula 

function. Additionally, the failure of the system is influenced by 

different failure modes and the magnitude of the failure 

threshold. The constant threshold is widely used in failure 

process analysis, typically based on expert experience and 

experimental results. However, considering the internal 

dynamic characteristics of complex systems, the ability to resist 

external shocks will change over time, and a non-fixed 

threshold can better describe the state of the system. Hence, this 

paper proposes the concept of a dynamic failure threshold to 

describe the failure threshold. 

Although many reliability studies have established models 

for multiple degradation processes and competing shock 

failures, a significant number of them have overlooked the 

influence of system heterogeneity and competing failure models 

with non-fixed failure thresholds. For instance, in Ref. [16], 

only the competitive failure reliability of multivariate Wiener 

processes and impact processes is considered, without 

accounting for dynamic failure thresholds. Conversely, in Ref. 

[32], dynamic failure thresholds are considered, but the 

degradation process model is overly simplified, and a constant 

hard failure threshold is assumed, which undermines the 

credibility of the reliability function results.  

Therefore, to address the aforementioned issues, the 

reliability modeling based on multiple Wiener degradation-

shock competing failure process and dynamic failure threshold 

is proposed, which is based on the competitive failure reliability 

model. The Copula function is employed to analyze the 

correlation among the multiple degradation processes within the 

complex system. The Akaike information criterion and 

Bayesian information criterion (AIC, BIC) are used to select the 

optimal Copula function, enabling the derivation of the 

relationship between the multiple degradation processes of the 
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system. Then, a reliability model of the interaction between 

multiple degradation processes and the shock process is 

established in this paper. Numerical cases and real cases are 

conducted to compare, the experiment results show that the 

constructed model proposed in this paper aligns more closely 

with the actual operational state of the system. The 

contributions of this paper are as follows. 

a) This article proposes a competitive failure reliability 

model that integrates multiple Wiener processes with 

random effect and random shock processes; 

b) In the competitive failure model, the hard failure 

threshold is associated with the degradation increment, 

resulting in a dynamic reliability model that accounts 

for changes in the degradation process; 

c) The Copula function is employed to analyze the 

correlation between multivariate Wiener degradation 

processes, and the Monte Carlo algorithm is utilized 

to address the multiple integration problem in the 

reliability model. 

The notations used in this paper are described in the bellow. 

Table 1. the different notation used in this paper. 

Notation Description Notation Description 

Xi(t) 
The i-th degradation 

process 
Si(t) 

The i-th degradation 

increments 

Oi(t) 
The i-th overall 

degradation process 
Li 

The i-th soft failure 

threshold 

Wi The j-th shock loads Dj 

The hard failure 

threshold after the j-

th random shock 

D0 
The initial value of the 

hard failure threshold 
λ 

The intensity of a 

homogeneous 

Poisson process 

Fi(t) 
The first arrival time 

distribution 
Ri(t) 

The reliability 

function 

C(u,v) 
Bivariate (u and v) 

copula function 
P 

The probability that 

the fatal shock 

occurs 

q 
The probability that the 

nonfatal shock occurs 
AIC 

Akaike information 

criterion 

BIC 
Bayesian information 

criterion 
MLE 

Maximum likelihood 

estimation 

HPP 
Homogeneous Poisson 

process 
  

The rest of the paper is organized as follows. Section 2 

represents the operation description of system. Then, the failure 

process is definite in Section 3, including the degradation 

process and shock process. Section 4 represent the reliability 

model based on multiple wiener degradation-shock competing 

for failure processes and dynamic failure threshold. Section 5 is 

the experiment results and analysis. The conclusion exists in 

Section 6. 

2. The operation description of system 

In general, there are numerous factors contributing to the failure 

of complex systems, including wear, corrosion, pressure, 

temperature, and more. Wear and corrosion are considered 

internal factors, whereas pressure and temperature are external 

factors. Consequently, the failure types of complex systems can 

be categorized into two groups: soft failure and hard failure. The 

former occurs when the performance degradation surpasses the 

soft failure threshold, while the latter is triggered by random 

shock loads exceeding the hard failure threshold. Random 

shocks represent external factors that impact the system. For 

instance, the battery level and charging speed of a mobile phone 

fluctuate with usage time, resulting in two soft failure processes 

for the phone. On the other hand, when the external 

environment becomes excessively cold, overheated, or when the 

phone experiences a fall from a height, it may malfunction or 

experience an increased frequency of failures, representing the 

hard failure process. Furthermore, multiple studies have 

demonstrated that external shocks not only accelerate the 

degradation rate of system components but also weaken the 

overall resilience of the system. Therefore, adopting a constant 

failure threshold may undermine the reliability evaluation 

results of the system, leading to deviations from its actual 

operating state. 

Hence, considering the variability of complex system 

operation processes, a single degradation process model cannot 

accurately describe the true state of the system. The multi-

degradation process and the external shock process are 

considered dependent in this paper, and the hard failure 

threshold will change with the degradation increment. The 

operation process in the overall life cycle of a complex system 

is depicted in Fig.1. 

In Fig.1, the system will be affected by multi-degradations 

(Xi(t), i=1,…,m) in its life cycle, and the degradation processes 

are interdependent during system operation. Since the external 

shocks of the environment will affect the system operation state, 

the degradation increment Iij will be generated in the 

degradation process when the random shock arrived. Then, as 

the degradation amount increases, the soft failure process will 

occur when the degradation amount Xi(t) outpaces the soft 
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failure threshold li (Xi(t)> li). Since the degradation increment 

obtained by the impact of shock process, the resistance ability 

of system will be weakened. 

 

Fig. 1. The operation process of the complex system. 

Hence, the dynamic hard failure threshold D(t) is proposed 

to represent the failure process, as shown in the subgraph below 

Fig.1. When the degradation increment Iij are generated by the 

j-th random shock, the hard failure threshold will be decrease 

with the degradation increment, that is, the initial value D0 of 

hard failure threshold is decreased to Dj. Hard failure occurs 

when the random shock load Wj exceeds the hard failure 

threshold Dj.  

In this paper, the extreme shock model is adopted as the 

random shock model, which includes non-fatal shocks and fatal 

shocks. In Fig.1, W4 represents the fatal shock, directly causing 

system failure when the shock load W4  exceeds the threshold 

D4 (W4> D4). On the other hand, W1, W2, W3 represent non-fatal 

shocks, which affect the failure threshold and degradation 

increment but do not result in the hard failure. 

3. The definition of the failure process  

To enhance the utilization of the complex system, it is necessary 

to analyze its operational reliability. Due to the complexity of 

the service environment, a single degradation process cannot 

accurately depict the system’s degradation trend. Therefore, by 

considering the correlation between multiple degradation 

processes and the random shock processes, a reliability model 

based on the dependent competitive failure of degradation - 

shock processes and dynamic failure threshold is constructed in 

this paper. 

3.1. The random shock modelling 

Considering the external shocks of the environment can be 

classified into fatal shocks and non-fatal shocks. If a fatal shock 

act on the system, a hard failure will occur immediately. When 

a non-fatal shock occurs, it leads to a degradation increment and 

weakens the ability of the system to resist the external shocks. 

Consequently, the hard failure threshold of the system decreases 

with each shock occurs [3,8].  

Assuming the number of the random shocks N(t) are 

consistent with the Homogeneous Poisson Process(HPP). The 

shock affects the system with the constant rate 𝜆 . Hence, the 

probability when the number of the shock being k (N(t)=k) can 

be represented by Eq. (1). 

𝑝(𝑁(𝑡) = 𝑘) =
𝑒(−𝜆𝑡)(𝜆𝑡)𝑘

𝑘!
, 𝑘 = 0,1, . ..  (1) 

Suppose that the probability of the fatal shock occurring is 

p. Then, the probability of the non-fatal shock occurring is q 

(where q=1-p). The shock number N(t) includes N1(t) and N2(t), 

i.e. 𝑁(𝑡) = 𝑁1(𝑡) + 𝑁2(𝑡). Furthermore, the shock strength of 

the fatal shock and non-fatal shock on the system is 𝜆𝑝, 𝜆𝑞 , 

respectively. 

The probability that the fatal shock and the non-fatal shock 

not occurred is as follows: 

𝑝(𝑁1(𝑡) = 0) = 𝑒
(−𝜆𝑝)   (2) 

𝑝(𝑁2(𝑡) = 𝑘) =
𝑒(−𝜆𝑞𝑡)(𝜆𝑞𝑡)𝑘

𝑘!
, 𝑘 = 0,1,2, . .. (3) 

In this paper, Wj is the j-th shock load. Generally, the 

external shock loads are following the normal distribution, 

𝑊𝑗~𝑁(𝜇𝑊𝑗 , 𝜎𝑊𝑗
2 ). The specific value of p, q and 𝜇𝑊𝑗 , 𝜎𝑊𝑗

2  can 

be obtained by fitting the shock data. 

Considering that the hard failure threshold decreases when 

the random shock acts on the system, the hard failure threshold 

D(t) undergoes changes that are associated with the degradation 

increment and a threshold parameter c, represented as formula 

(4). 

𝐷𝑗(𝑡) = 𝐷0 − 𝑐 ∑ 𝐼𝑖𝑗
𝑁2(𝑡)
𝑗=0   (4) 

where D0 is the initial value of the hard failure threshold, 𝐼𝑖𝑗  is 

the degradation increment, which is caused by the j-th random 

shock act on the i-th degradation process, c represents the hard 

failure threshold coefficient, which can adjust the failure 
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threshold value. 

Hence, the probability that the hard failure not occurred is 

same as the probability that the shock loads not exceeds the D(t), 

the calculation process is described as formula (5). 

𝑝(𝑊 < 𝐷(𝑡)) = 𝑝(𝑊 + 𝑐 ∑ 𝐼𝑖𝑗
𝑁2(𝑡)
𝑗=0 < 𝐷0) = 𝑝(𝐸 < 𝐷0)    (5) 

where 𝐸~𝑁(𝜇𝑊 + 𝑐𝜇𝐼𝑖 , 𝜎𝑊
2 + 𝑐𝜎𝐼𝑖

2) , the hard failure threshold 

coefficient c is a constant value and can be obtained by fitting 

the shock data. 

Hence, formula (5) is 

𝑝(𝑊 < 𝐷(𝑡)) = 𝑝(𝐸 < 𝐷0) = 𝛷

(

 
𝐷0 − 𝜇𝑊 − 𝑐𝜇𝐼𝑖

√𝜎𝑊
2 + 𝑐𝜎𝐼𝑖

2

)

  

When the number of fatal shocks is greater than zero (N1(t)>0), 

the system will fail immediately. When the number of N2(t) is 

greater than zero and the number of N1(t) is zero (N1(t)=0, 

N2(t)>0), the degradation increment of the system will generate 

and the hard failure threshold will decrease. Therefore, the 

calculation process of hard failure not occurred at time t is 

shown in Eq. (6). 

𝑝𝑁𝐻(𝑡) = 𝑝 (⋂ 𝑊𝑗 < 𝐷𝑗(𝑡)
𝑁2(𝑡)
𝑗=1 )|𝑁1(𝑡) = 0, 𝑁2(𝑡) =

𝑘)) × 𝑝(𝑁1(𝑡) = 0) × 𝑝(𝑁2(𝑡) = 𝑘)           = ∑ 𝑝(𝑊 <∞
𝑘=0

𝐷(𝑡))𝑗 × 𝑝(𝑁1(𝑡) = 0) × 𝑝(𝑁2(𝑡) = 𝑘)           =

∑ Φ(
𝐷0−𝜇𝑊−𝑐𝜇𝐼𝑖

√𝜎𝑊
2 +𝑐𝜎𝐼𝑖

2
)

𝑗

× 𝑒−𝜆𝑝𝑡 ×
𝑒−𝜆𝑞𝑡(𝜆𝑞𝑡)𝑘

𝑘!

∞
𝑘=0  (6) 

3.2. The degradation process modelling 

Generally, the first arrival time at which the degradation amount 

exceeds the failure threshold follows an inverse Gaussian 

distribution. Incorporating this distribution significantly 

enhances the theoretical foundation for reliability analysis. In 

this paper, the Wiener process with the random effects [29,12] 

is used to model the degradation process. The specific 

description of the Wiener process is presented in Eq. (7). 

𝑋𝑖(𝑡) = 𝜇𝑖𝑡 + 𝜎𝑖𝐵(𝑡)   (7) 

Where 𝑋𝑖(𝑡)  is the i-th degradation process in the time t, 

𝜇𝑖,𝜎𝑖 is the drift parameters and the diffusion parameter of the i-

th degradation process, respectively. 𝐵(𝑡)  is the standard 

Brownian motion.  

Due to the various factors such as operational errors and 

complex environmental conditions, the degradation process of 

subsystems or key components within a complex system 

exhibits variations. In this paper, the Wiener process with the 

stochastic parameters is used as the degradation process model. 

The individual differences among subsystems are primarily 

described by the parameters 𝛿 = (𝜇, 𝜎) . In the degradation 

process model, 𝜇 represents the random variable, which follows 

a normal distribution 𝜇~𝑁(𝜂, 𝜎𝜂
2) and is utilized to capture the 

heterogeneity of the subsystem, 𝜎 is a constant parameter that 

represents the common attributes of the system. Therefore, 

considering the multiple degradation processes within the 

system, the degradation model is presented in Eq. (8). 

{
𝑋𝑖(𝑡) = 𝜇𝑖𝑡 + 𝜎𝑖𝐵(𝑡)

𝜇𝑖~𝑁(𝜂𝑖 , 𝜎𝜂𝑖
2 )

   (8) 

where 𝑋𝑖(𝑡) is the degradation process of the i-th subsystem in 

the time t, the parameters 𝛿 = (𝜇, 𝜎)  can be obtained by the 

fitting of the degradation data.  

The degradation increment generated by the external shock, 

the shock load is proportional to the degradation increment. The 

relationship between the shock and degradation increment is 

shown in(9). 

𝐼𝑖𝑗 = 𝑎𝑖𝑊𝑗 , 𝑗 = 1, . . . , 𝑘，  (9) 

where a is the correlation coefficient between degradation 

increment and shock loads, Iij is the i-th degradation increment 

of the j-th shock, k is the sum number of the shock.  

The coefficient ai can be calculated by the experiment [22]. 

Hence, when the shock number of the system is k (N2(t)=k) in 

the time t, the sum of degradation increment is 𝑆𝑖(𝑡) = ∑ 𝐼𝑖𝑗
𝑘
𝑗=0 . 

Generally, the degradation process of the system includes 

the self-degradation and degradation increment caused by the 

random shock, which is described as formula (10). 

𝑂𝑖(𝑡) = 𝑋𝑖(𝑡) + 𝑆𝑖(𝑡) = 𝜇𝑖𝑡 + 𝜎𝑖𝐵(𝑡) + ∑ 𝐼𝑖𝑗
𝑘
𝑗=0           (10) 

Under the assumption of independence, since the shock load 

follows the normal distribution, when the N2(t)=k, the sum of 

the increment is also following the normal distribution. 𝑆𝑖(𝑡) =

∑ 𝐼𝑖𝑗
𝑁2(𝑡)
𝑗=0 ~𝑁(𝑘𝜇𝐼 , 𝑘𝜎𝐼

2) 

where 𝜇𝐼 = 𝑎𝑖𝜇𝑊,𝜎𝐼
2 = 𝑎𝑖

2𝜎𝑊
2  

Hence, the probability distribution function is  

𝐹𝑆𝑖(𝑠) = Φ(
𝑠−𝑘𝑎𝑖𝜇𝑊

√𝑘𝑎𝑖𝜎𝑊
)   (11) 
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The accurate calculation of reliability involves determining 

the probability of neither hard nor soft failure processes 

occurring throughout the entire life cycle of the system. 

Consequently, determining a reasonable failure threshold and 

the interaction relationship between the two failure processes 

are the focus of research. By incorporating the degradation 

process and the shock process, the reliability model can be 

formulated. 

4. Reliability modeling considering the competing failure 

process 

The external shock accelerates the degradation process and the 

hard failure threshold, thereby weakening the system's ability to 

resist external shocks. Consequently, it is crucial to consider the 

correlation between the degradation process and the shock 

process when modelling system’s reliability. 

4.1. The reliability model without considering correlation 

According to the two types of random shock: fatal shock and 

non-fatal shock, the reliability modeling based on multiple 

wiener degradation-shock competing failure process should be 

discussed by the different situations.  

a) When N(t)=0, the system is not affected by the external 

shock but the degradation process. Hence, the probability 

PSF1_i that the system will not failure is 

𝑃𝑆𝐹1𝑖(𝑡|𝑁(𝑡) = 0) = 𝑝(𝑋𝑖(𝑡) < 𝑙𝑖) = 𝑝(𝑇 > 𝑡) = 1 − ∫ 𝑓(𝑡|𝑢𝑖)𝑑𝑡
𝑡

0

 

= 1 − (𝜙(
𝜂𝑖𝑡−𝑙𝑖

√𝜎𝜂𝑖
2 𝑡2+𝜎𝑖

2𝑡
) + 𝑒𝑥𝑝 (

2𝜂𝑙𝑖

𝜎𝜂𝑖
2 +

2𝜎𝑖
2𝑙𝑖

𝜎𝑖
2 ) ∙ 𝜙 (

2𝜎𝜂𝑖
2 𝑡𝑙𝑖+𝜎𝑖

2(𝜂𝑖𝑡+𝑙𝑖)

𝜎𝑖
2√𝜎𝜂𝑖

2 𝑡2+𝜎𝑖
2𝑡
))(12) 

where 𝜙(⋅) represent the standard normal distribution, (𝜂𝑖 , 𝜎𝜂𝑖) 

is the parameters of the i-th degradation process. The specific 

derivation process is shown in Ref.[32]. 

Then the reliability model of the system based on the 

competing failure process is 

𝑅𝑖
1(𝑡) = 𝑝(𝑋𝑖(𝑡) < 𝑙𝑖|𝑁1(𝑡) = 0, 𝑁2(𝑡) = 0) × 𝑝(𝑁1(𝑡) =

0, 𝑁2(𝑡) = 0) = 𝑃𝑆𝐹1_𝑖(𝑡) × 𝑒
−𝜆𝑝𝑡 × 𝑒−𝜆𝑞𝑡   (13) 

b) When the number of the external shock greater than 

zeros(N(t)>0), the system is influenced by the degradation 

process and the random shock process.  

The overall degradation is combined with the self-

degradation and degradation increment, the probability PSF2_i 

that the system will not have the soft failure is 

𝑃𝑆𝐹2_𝑖(𝑡|𝑁(𝑡) > 0) = 𝑝(𝑂𝑖(𝑡) < 𝑙𝑖|𝑁2(𝑡) = 𝑘) =

𝑝(𝑋𝑖(𝑡) + 𝑆𝑖(𝑡) < 𝑙𝑖|𝑁2(𝑡) = 𝑘)    (14) 

When the number of fatal shock N1(t)>0, the hard failure will 

occur immediately. To analyze the hard failure process, the non-

fatal shock is mainly discussed in this section. The reliability 

model of the system subjected to the competing failure process 

is 

𝑅𝑖
2(𝑡) =∑𝑝(𝑂𝑖(𝑡) < 𝑙𝑖 , ⋂ 𝑊𝑗 < 𝐷(𝑡)

𝑁2(𝑡)

𝑗=1

|𝑁2(𝑡) = 𝑘) × 𝑝(𝑁2(𝑡) = 𝑘)

∞

𝑘=1

 

= ∑
1

√(2𝜋(𝜎𝑖
2+𝜎𝜂𝑖

2 𝑡)𝑡3)

1
2

∙ ∫ 𝜙 (
𝑙𝑖−𝑥−𝑘𝑎𝑖𝜇𝑤

√𝑘𝑎𝑖𝜎𝑤
) ∙ 𝑥 ∙ 𝑒𝑥𝑝 [−

(𝑥−𝜂𝑖𝑡)
2

2(𝜎𝜂𝑖
2 𝑡2+𝜎𝑖

2𝑡)
] 𝑑𝑥

𝑙𝑖

0
∞
𝑘=1 −

𝜙 (
−𝑘𝑎𝑖𝜇𝑤

√𝑘𝑎𝑖𝜎𝑤
) [1 − (𝜙(

𝜂𝑖𝑡−𝑙𝑖

√𝜎𝜂𝑖
2 𝑡2+𝜎𝑖

2𝑡
) + 𝑒𝑥𝑝 (

2𝜂𝑙𝑖

𝜎𝜂𝑖
2 +

2𝜎𝑖
2𝑙𝑖

𝜎𝑖
2 ) ∙

𝜙 (
2𝜎𝜂𝑖

2 𝑡𝑙𝑖+𝜎𝑖
2(𝜂𝑖𝑡+𝑙𝑖)

𝜎𝑖
2√𝜎𝜂𝑖

2 𝑡2+𝜎𝑖
2𝑡
))] × 𝜙(

𝐷0−𝜇𝑤−𝑐𝜇𝐼𝑖

√𝜎𝑤
2+𝑐𝜎𝐼𝑖

2
)

𝑘

×
exp (−𝜆𝑞𝑡)∙(𝜆𝑞𝑡)𝑘

𝑘!
  

(15) 

The specific derivation process is shown in Appendix A. 

Based on the mutually exclusive event, the reliability model 

of the i-th subsystem at time t is shown in formula (16).  

𝑅𝑖(𝑡) = 𝑅𝑖
1(𝑡) + 𝑅𝑖

2(𝑡)  (16) 

Since the analytical solution of the definite integral in 

formula(16) is difficult to obtain. In this paper, the Monte Carlo 

method is adopted to calculate the area of the integrated 

function between the zero and soft failure threshold (i.e. [0,li]). 

The specific calculation process is shown in Fig. 2.  

 

Fig. 2. The flow chart of the integrated function calculation. 
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4.2. The reliability model construction considering the 

correlation 

When the degradation amount of any subsystem is greater than 

the soft failure threshold li, the system will fail immediately. To 

describe the relationship among the different degradation 

processes, the copula function[26] is used in the reliability 

modeling. 

Assuming that the system is composed of m subsystems, that 

is the m degradation processes. For the i-th degradation 

process(i=1,…,m), the cumulative distribution function of the 

failure time is 

𝑝(𝑇𝑖 ≤ 𝑡𝑖) = 𝑝(𝑋𝑖 > 𝑙𝑖)𝐹𝑖(𝑡) = 1 − 𝑅𝑖(𝑡) (17) 

Then, the joint cumulative distribution function of the 

failure time for the m degradation processes is shown in formula 

(18). 

𝑓(𝑋1, . . . , 𝑋𝑚) = 𝑝(𝑋1 > 𝑙1, 𝑋2 > 𝑙2, . . . , 𝑋𝑚 > 𝑙𝑚) =

𝑐(𝐹1(𝑋1), 𝐹2(𝑋2), . . . , 𝐹𝑚(𝑋𝑚); 𝛼)∏ 𝑓𝑖(𝑋𝑖; 𝜃)
𝑚
𝑖=1 =

∂𝑚𝐶(𝐹1(𝑋1),𝐹2(𝑋2),...,𝐹𝑚(𝑋𝑚);𝛼)

∂𝐹1(𝑋1) ∂𝐹2(𝑋2)...∂𝐹𝑚(𝑋𝑚)
∏ 𝑓𝑖(𝑋𝑖; 𝜃)
𝑚
𝑖=1  (18) 

where 𝑐(𝐹1(𝑋1), 𝐹2(𝑋2), . . . , 𝐹𝑚(𝑋𝑚); 𝛼)  is the probability 

density function of the copula function, 𝛼 is the parameters of 

the function, 𝑓𝑖(𝑋𝑖; 𝜃)  is the failure time probability density 

function of the i-th degradation process, 𝜃 is the parameters of 

the fi(.).  

In the process of parameters estimating (𝛼,𝜃), the maximum 

likelihood estimation is adopted in this paper. The log-

likelihood function of the copula function is 

𝑙(Θ)  = ∑ 𝑙𝑛 𝑐 (𝐹1(𝑋1𝑡), 𝐹2(𝑋2𝑡), . . . , 𝐹𝑚(𝑋𝑚𝑡); 𝛼)
𝑇
𝑡=1 +

∑ ∑ 𝑙𝑛 𝑓𝑖 (𝑋𝑖𝑡; 𝜃)
𝑚
𝑖=1

𝑇
𝑡=1               (19) 

where 𝛩 is the overall parameters𝛩 = {𝛼, 𝜃} , the maximum 

likelihood function of parameters 𝛼,𝜃 is shown in formula (20). 

{
�̂�𝑀𝐿𝐸 = 𝑎𝑟𝑔𝑚𝑎𝑥𝛼×∑ 𝑙𝑛 𝑐 (𝐹1(𝑋1), 𝐹2(𝑋2), . . . , 𝐹𝑚(𝑋𝑚); 𝛼)

𝑇
𝑡=1

�̂�𝑖𝑀𝐿𝐸  = 𝑎𝑟𝑔𝑚𝑎𝑥𝜃𝑖 𝑙𝑛 𝑓𝑖 (𝑋𝑖𝑡; 𝜃
𝑖)

(20) 

The specific deduced process of the copula method is 

described in Ref. [27]. 

Based on the formula (16), considering the correlation of 

multiple degradation processes in the failure process, the 

probability that the system does not fail in the time t is 

𝑝(𝑇1 > 𝑡1, 𝑇2 > 𝑡2, . . . , 𝑇𝑚 > 𝑡𝑚) =

𝐶(𝑅1(𝑡1), 𝑅2(𝑡2), . . . , 𝑅𝑚(𝑡𝑚))=1- ∑ 𝐹𝑖(𝑡𝑖)
𝑚
𝑖=1 +

∑ 𝐶(𝐹𝑖(𝑡𝑖), 𝐹ℎ(𝑡ℎ), . . . )1≤𝑖<ℎ≤𝑚 −

∑ 𝐶(𝐹𝑖(𝑡𝑖), 𝐹ℎ(𝑡ℎ), 𝐹𝑘(𝑡𝑘), . . . )1≤𝑖<ℎ<𝑘≤𝑚 +

(−1)𝑚𝐶(𝐹1(𝑡1), 𝐹2(𝑡2), . . . , 𝐹𝑚(𝑡𝑚))  (21) 

Assume that there are only two degradation process (O1,O2) 

existed in the complex system, the reliability calculation 

process of the system is denoted as(22). 

 

𝑅(𝑡) = 𝐶(𝑅1(𝑡1), 𝑅2(𝑡2))=1-𝐹1(𝑡1) − 𝐹2(𝑡2) +

𝐶(𝐹1(𝑡1), 𝐹2(𝑡2)) = 𝑅1(𝑡1) + 𝑅2(𝑡2) − 1 + 𝐶(𝑢, 𝑣)           (22) 

where 𝑢 = 𝐹1(𝑡1)=1-𝑅1(𝑡1)，𝑣 = 𝐹2(𝑡2)=1-𝑅2(𝑡2).  

The widely used Copula functions of two degradation 

process are described in Table 2.

Table 2. The copula function of two degradation process. 

Copula functions C(u,v) The range of parameter 

Gumbel copula 𝐶(𝑢, 𝑣; 𝛼) = 𝑒𝑥𝑝 {−[(− 𝑙𝑛 𝑢)𝛼 + (− 𝑙𝑛 𝑣)𝛼]
1
𝛼} 𝛼 ∈ [1, +∞) 

Clayton copula 𝐶(𝑢, 𝑣; 𝛼) = (𝑢−𝛼 + 𝑣−𝛼 − 1)
1
𝛼 𝛼 ∈ (0,∞) 

Frank copula 𝐶(𝑢, 𝑣; 𝛼) = −
1

𝛼
𝑙𝑛 (1 +

(𝑒−𝛼𝑢 − 1)(𝑒−𝛼𝑣 − 1)

(𝑒−𝛼 − 1)
)

−
1
𝛼

 𝛼 ≠ 0 

Norm copula 

𝐶(𝑢1, 𝑢2; 𝛼)

= ∫ ∫
1

2𝜋(1 − 𝜌2)1/2
𝑒𝑥𝑝 {−

𝑠2 − 2𝜌𝑠𝑡 + 𝑡2

𝑠(1 − 𝜌2)
}

𝜙−1(𝑢2)

−∞

𝜙−1(𝑢1)

−∞

𝑑𝑠𝑑𝑡 

𝜙−1is inverse function of standard normal 

distribution 

t-copula 

𝐶(𝑢1, 𝑢2; 𝜌, 𝑣) = ∫ ∫
1

2𝜋(1 − 𝜌2)1/2
𝑒𝑥𝑝 {1

𝑡2
−1(𝑢2)

−∞

𝑡1
−1(𝑢1)

−∞

+
𝜁1
2 − 2𝜌𝑠𝑡 + 𝜁2

2

𝑠(1 − 𝜌2)
}

−
𝑣+2
2

𝑑𝜁1𝑑𝜁2 

𝑡𝑣
−1is the inverse function of t-distribution 

with degrees of freedom v 

Hence, reliability considering the correlation between the multiple degradation process and the shock process can be 
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obtained based on the different copula functions.  

Furthermore, in order to select an optimal copula function, 

AIC, BIC are used in this paper, thereby enhancing the accuracy 

of the reliability results. The lower the criteria model, the better 

the copula function. The calculation formulas of AIC and BIC 

are shown in (23). 

{
𝐴𝐼𝐶 = 2𝑚𝑎𝑥[𝑙(Θ)] + 2𝑛𝑝
𝐵𝐼𝐶 = −2𝑚𝑎𝑥[𝑙(Θ)] + 2𝑛𝑝 𝑙𝑛( 𝑛)

  (23) 

where max[l(Θ)] is the max value of the log-likelihood function 

(formula(19)), np is the number of parameters that need to be 

estimated, n is the number of the samples.  

In the parameter estimation process of copula function, it 

can be calculated by the ‘Matlab toolkit’, such as the ‘copulafit’ 

function. The results of likelihood function can be solved by the 

‘matlab copula patton toolbox’[4]. The specific optimal copula 

function selection process is described in Section 5. 

5. Experiment results and analysis 

To validate the effectiveness of the model proposed in this paper, 

both a numerical case and a real case are examined. Considering 

the mutual influence between the degradation process and the 

random shock impacts on the complex system during operation, 

both cases involve two sub-degradation processes. By utilizing 

the reliability model proposed in this study, the reliability results 

throughout the system's life cycle are obtained. These results 

serve as an analytical foundation for intelligent decision-

making in the later stage of the system. 

5.1. The numerical example 

In this paper, given that the system experiences two degradation 

processes and an external shock process, the multiple wiener 

degradation-shock competition failure process is proposed to 

construct the reliability model. Both degradation processes are 

modeled as Wiener process with random effect, while the shock 

process is presented by the extreme shock model. It should be 

noted that the variables of numerical simulation have no 

physical meaning, mainly reflecting the changing trend of the 

reliability curve in different situations. The specific value of the 

parameters in the model is presented in Table 3.

Table 3. The specific value of the parameters. 

Parameter Description Value 

𝜎1, 𝜎2 The diffusion parameter 𝜎1=0.2,𝜎2 = 0.4 

{
𝜇1~𝑁(𝜂1, 𝜎𝜂1)

𝜇2~𝑁(𝜂2, 𝜎𝜂2)
 The drift parameters {

𝜇1~𝑁(10.15，0.2)

𝜇2~𝑁(15.3,0.15)
 

l1, l2 The soft threshold of degradation process 𝑙1=40,𝑙2 = 42 

𝜆 The shock rate 3 × 10-3 

k The number of the shock 3 

P The probability of fatal shock occurring 1/3 

𝑊𝑗~𝑁(𝜇𝑊 , 𝜎𝑊) The shock loads 𝜇𝑊 = 0.6, 𝜎𝑊 = 0.01 

c the coefficient of the degradation increment 0.75 

D0 The initial value of the hard failure threshold 15 

Based on the parameters of Table 3 and the calculation 

process of Eq.(8), two degradation curve of the numerical case 

is shown in Fig. 3.  

 

Fig. 3. The Wiener-degradation processes with random effect 

in the numerical case. 

 

Fig. 4. Reliability results without considering correlation.  

The two-degradation process is similar to each other in Fig.3. 

Then, combining the formulas (16) and (22), the reliability 

based on the two different degradation and external shock is 
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obtained, which is shown in Fig.4. 

In Fig.4, the reliability curve is declined with the variable t 

(no physical meaning) change, which is similar to each other by 

the similar degradation process and also conforms to the real 

operation situation.  

Considering the reliability results corresponding to different 

degradation processes, the correlation between two reliability 

R1, R2 is calculated by the Copula function in this paper. To 

select the optimal Copula function in reliability analysis, based 

on the formulas (18) and (22), the log-likelihood results and AIC, 

BIC of the two reliability R1, R2 are calculated. The Copula 

function corresponding to the minimum results of AIC and BIC 

is selected as the optimal function[34]. Hence, the Copula 

calculation results of numerical case are shown in Table 4.

Table 4. the results of different copula function.  

Copula function LLa AICb BICc parameter Rank 

Norm 8.4988e5 1699762 1699767.6 1 5 

Clyton -3.7226e3 -7443.2 -7437.6 29.1726 4 

Frank -4.6974e3 -9392.80 -9387.2 122.0997 2 

Gumbel -7.8710e3 -15740 -15734.4 25.5476 1 

T -4.0309e3 -8057.8 -8046.6 [0.9,2.1] 3 

a Log-likelihood; b Akaike information criterion; c Bayes information criterion 

In Table 4, five copula functions are compared to obtain the 

optimal Copula function. It is clear that the AIC/BIC results of 

Gumbel function is the smallest, AIC=-15740, BIC=-15734.4.  

The Copula function that can describe the joint distribution of 

reliability corresponding to two degradation processes is 

Gumbel function, followed by the Frank function, and the result 

of normal function is the worst. Therefore, this paper chooses 

the Gumbel function to analyze the correlation of the multiple 

degradation process in the numerical case. 

Based on the optimal Copula function, combining the 

formulas (16) and (22) in section 4, the reliability of the 

independent degradation process is used to compare with the 

model proposed in this paper, the comparison results are shown 

in Fig.5. 

 

Fig.5. The reliability results comparison based on different 

method. 

In Fig.5, the X-axis represent the variable t (no physical 

meaning), the Y-axis is the reliability results. The reliability 

corresponding to the two degradation processes are similar to 

the reliability considering the correlation of degradation. The 

reliability results calculated by the Gumbel Copula function can 

better show the similarity between the different degradation 

processes. Hence, the model established in this paper can better 

evaluate the reliability of the system. Moreover, it is obvious 

that the reliability with the independent degradation process is 

far lower than the real reliability, which not only does not reflect 

the similarity between the two subsystems but underestimates 

the reliability of the system. 

To analyze the impact of random shock rate 𝜆  on the 

reliability, the different 𝜆  are calculated for the reliability 

calculation. The comparison results are shown in Fig.6. 

 

Fig. 6. The reliability results under different 𝜆. 
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In Fig.6, the higher the value of the 𝜆 , the lower the 

reliability results, which is satisfied with the real situation. 

When the shock rate 𝜆  is higher, the ability that resists the 

random shock of the system will be decreased, and the 

reliability will be further reduced. Therefore, external 

environmental factors need to be considered in the assessment 

of reliability. 

5.2. Case application 

To further validate the advantages of the proposed method,  

a widely used case-Micro-electro-mechanical systems (MEMS) 

is adopted in this paper[13]. MEMS is extensively used in the 

industry due to its cost-effectiveness, light and easy integration. 

But its small size makes it susceptible to external impacts, 

resulting in competitive failure processes. On the other hand, 

the MEMS system consist of multiple micro-mechanical 

resonators (MMR) operating in series and parallel modes, and 

the sampling frequency of these resonators is extremely affected 

by the external environment[36]. Each resonator will undergo a 

degradation failure process during operation, and the MEMS 

composed of different resonators will experience multiple 

degradation failure processes within the whole lifecycle, which 

is meeting the multi-degradation process model established in 

this paper. Moreover, wear degradation and external random 

shock are the main reasons for MEMS failure. With the 

extension of working time, the wear debris caused by friction 

will further affect the MEMS operation, and gradually reducing 

its ability to resist external impacts. This is equivalent to the 

dynamic failure threshold caused by the MEMS being affected 

by external shocks during operation. 

Hence, MEMS is a typical system that is influenced by 

multiple degradation processes and a shock process with a 

dynamic failure threshold, which is according to the reliability 

model constructed in this paper. It is worth noting that the 

MEMS system is often composed of multiple resonators in 

series, and if any resonator fails, the entire system will fail. In 

this paper, the system that two resonators in a series are selected 

as the verification object. Therefore, the MEMS system used in 

this study involves two degradation processes. 

Since the parameters of the MEMS system have been 

estimated in references [13,30], and obtaining the original 

experiment details is challenging, the values of the estimated 

parameters are cited directly in this paper. The other parameters 

involved in the reliability model (such as the threshold 

coefficient c, shock number k, etc.) are mainly determined by 

the user usage of the system. For example, the threshold 

coefficient c is related to the size of the failure threshold D(t). 

when the coefficient c increases, the failure threshold D is 

decreased faster, which indicates the system is greatly affected 

by external shocks; The smaller the shock number k, the less 

external shock act on the system, and the higher the reliability 

of the system. Different these parameters will not affect the 

analysis results of experiment, and can be continuously adjusted 

to gradually meet the safety requirements of the product. Hence, 

some parameters are set by a priori assumption. The purpose of 

it is to obtain the changing trend of the reliability model under 

the different parameters. The specific parameters of MEMS 

reliability are shown in Table 5.

Table 5. The parameters of two degradation processes and shock process. 

Parameter Description Value Sources 

𝜎1, 𝜎2 The diffusion parameter 𝜎1=2.0,𝜎2 = 1.5 assumption 

{
𝜇1~𝑁(𝜂1, 𝜎𝜂1)

𝜇2~𝑁(𝜂2, 𝜎𝜂2)
 The drift parameters {

𝜇1~𝑁(10.15，0.2)

𝜇2~𝑁(15.3,0.15)
 Ref. [14] 

l1, l2 The soft threshold of degradation process 1 2=4100, 4500l l =  Refs. [13,30] 

𝜆 The shock rate 3 × 10-3 Refs. [13,30] 

k The number of the shock 3 assumption 

P The probability of fatal shock occurring 1/3 Ref. [31] 

𝑊𝑗~𝑁(𝜇𝑊, 𝜎𝑊) The shock loads 𝜇𝑊 = 72.6𝜎𝑊 = 6.3 Ref. [32] 

c the coefficient of the degradation increment 0.75 assumption 

D0 The initial value of the hard failure threshold 92 Refs. [13,30] 
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Similar with the analysis process of numerical case, based 

on the parameters of Table 5 and the reliability calculation 

process of formula (16), the reliability results under two 

degradation processes are obtained, which is shown in Fig.7. 

 

Fig.7. The different reliability curve based on the two 

degradation processes. 

In Fig.7, the X-axis is the operation time of the MEMS 

system, the Y-axis is the reliability curve with the time. The red 

line and blue line are representing the reliability based on the 

first and second degradation process, respectively. The decline 

rate of the reliability curve is particularly fast when the time 

t=180. The reliability results of MEMS corresponding to the 

two degradation processes are extremely similar, indicating that 

the operational reliability results of the two resonators in MEMS 

are almost the same without considering correlation.  

Then, to analyze the correlation of two degradation process, 

the reliability with the multiple degradation process and random 

shock with dynamic failure threshold is calculated. Based on the 

formulas (16) and (22), the optimal Copula function in 

reliability modeling is obtained by the log-likelihood results and 

AIC, BIC of the two reliability R1, R2. The joint distribution of 

the reliability under different degradation processes are 

calculated. The calculation results of different Copula function 

are shown in Table 6.

Table 6. The copula function fitting results on the MEMS two-components. 

Copula function LLa AICb BICc parameter Rank 

Norm 17501 35005.5 35010.2 1 5 

Clyton -3577 -7152 -7147.4 164.9625 4 

Frank -2317 -4632 -4627.95 31.8054 2 

Gumbel -6533 -13065 -13060.8 70.8149 1 

T -3956 -7909 -7900.2 [0.9,2.1] 3 

In Table 6, it is obvious that the AIC and BIC of the Gumbel 

function is the smallest compared with the other Copula 

functions, AIC=-13065, BIC=-13060.8. The norm function is 

worst in the Copula function fitting process. Hence, the Gumbel 

function is chosen to calculate the joint distribution of two 

degradation processes in the MEMS case. 

Based on the Gumbel function and the formula (22), the 

reliability of the MEMS with a competitive failure process and 

dynamic failure threshold in the lifecycle is calculated. To 

demonstrate the advantage of the related multiple degradation 

process of the reliability model, the reliability model with an 

independent failure process is adopted for experiment 

comparison, which is shown in Fig.8. 

 

 

Fig. 8. The reliability comparison of MEMS system. 

Fig.8 depict the comparison results of the reliability under 

the different situation. The black line is the reliability under the 

multiple degradation process with the Copula -‘Gumbel’ 

function. The magenta line is the reliability that consider the 
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independent failure process. Clearly, the reliability with the 

independent process underestimates the real state of the MEMS. 

Furthermore, based on the dependent degradation processes, the 

results are similar to the reliability R1(t) and R2(t). Since the 

reliability is obtained by the correlation calculation of R1(t) and 

R2(t), the corresponding reliability trend of the two degradation 

processes is learned. Specifically, the reliability result of the 

model proposed in this paper is slightly lower than the reliability 

corresponding to the two degradation processes (R1(t) and R2(t)), 

which is also proved that the results are consistent with the real 

state. 

Since the dynamic failure threshold is proposed in the 

process of reliability model construction, to analyze the 

sensitivity of the parameters in the reliability results, the 

different threshold D(t) and shock rate λ are set in the reliability 

calculation process. Fig. 9 and Fig. 10 represent the impact of 

random shock rate 𝜆 and the hard failure threshold D(t) on the 

reliability. 

 

Fig. 9. The reliability under different D(t). 

 

Fig. 10. The reliability under different λ. 

In Fig.9, the blue line represents the reliability results under 

the dynamic failure threshold D(t). It is obvious that the 

reliability R(t) of the constant failure threshold is lower than that 

of the dynamic failure process. Since the resistance ability of 

the MEMS system will decrease when the random shock act on 

the product, and the reliability will decrease further. So, this is 

line in with the actual operating situation.   

Similarly, the reliability will increase when the random 

shock rate is reduced in Fig.10. When the random shock rate 

λ=0.043, the shock impact on the MEMS system is significant. 

So its reliability results rapidly decrease in the early stage 

during MEMS operation due to the high impact rate, leading to 

the MEMS system directly fail. But, when λ= 0.003, the 

reliability trend of MEMS during its lifecycle is relatively mild. 

Hence, it is necessary to pay attention to the impact of the 

external environment on the system. 

In this paper, the reliability model that considers the multiple 

degradation process and random shock with a dynamic failure 

threshold is constructed. The reliability results can serve as the 

analytical basis for the MEMS's intelligent decision-making. 

6. Conclusions 

In this paper, we propose a reliability model for a multi-

degradation processes system operating in a complex 

environment. The model is based on multiple wiener 

degradation-shock competing failure process and dynamic 

failure threshold. The Wiener process with the random effects is 

employed to capture the heterogeneity of the degradation 

process between subsystems. The hard failure process consists 

of an extreme shock model and a dynamic hard failure threshold. 

To enhance the accuracy of the reliability model, the copula 

function is adopted to obtain the joint distribution of reliability 

under multi-degradation processes. The reliability is then 

calculated by considering multiple dependent degradation 

processes and random shock processes. In the experiment 

results-both numerical and in MEMS application- it is observed 

that relying on independent degradation processes hampers 

result accuracy. Instead, using the wiener process with random 

effects and dynamic hard failure threshold better reflects the real 

operation state. Additionally, it is important to consider the 

impact of the external environment on the system, such as the 

shock rate (λ) and different hard failure thresholds (D(t)), when 

modeling system reliability. Hence, our proposed method not 

only enhances the credibility of reliability results but also 

provides support for further system maintenance strategies.

0 100 200 300 400 500 600 700 800
0

0.2

0.4

0.6

0.8

1

t

R
e
lia

b
ili

ty
 c

u
rv

e
 R

(t
)

 

 

Contant threshold D
0

Non-constant threshold D
0

80 100 120
0.22

0.24

0.26

0.28

0.3

 

 

0 200 400 600 800
0

0.2

0.4

0.6

0.8

1

t

R
e
lia

b
ili

ty
 c

u
rv

e
 R

(t
)

 

 

=0.013

=0.03

=0.043

=0.003

95 100 105

0.005

0.01

0.015

0.02

 

 



Eksploatacja i Niezawodność – Maintenance and Reliability Vol. 25, No. 4, 2023 

 

Acknowledgments 

This work was supported by the National Science Foundation of China (No. U2034209, No. 62120106011), and the Doctoral 

Dissertation Innovation Fund of Xi’an University of Technology(252072218). 

Appendix A 
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2(𝑡)  = ∑𝑝(𝑂𝑖(𝑡) < 𝑙 ，
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∞

𝑘=1
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∞
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0
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Where, 𝑓𝑋𝑖(𝑥) is the probability density function when 𝑋𝑖(𝑡) = 𝑥， 
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